On constant products of elements in skew polynomial rings
نویسنده
چکیده مقاله:
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such that $rf(X)=ac$. In particular, $r=ab_p$ for some $p$, $0leq pleq m$, and $a$ is either one or a product of at most $m$ coefficients from $f(X)$. Furthermore, if $b_0$ is a unit in $R$, then $a_1,a_2,cdots, a_n$ are all nilpotent. As an application of the above result, it is proved that if $R$ is a weakly 2-primal ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$, then a skew polynomial $f(X)$ in $R[X;alpha]$ is a unit if and only if its constant term is a unit in $R$ and other coefficients are all nilpotent.
منابع مشابه
on constant products of elements in skew polynomial rings
let $r$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $r$ and $f(x)=a_0+a_1x+cdots+a_nx^n$ be a nonzero skew polynomial in $r[x;alpha]$. it is proved that if there exists a nonzero skew polynomial $g(x)=b_0+b_1x+cdots+b_mx^m$ in $r[x;alpha]$ such that $g(x)f(x)=c$ is a constant in $r$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $r$ such tha...
متن کاملNilpotent Elements in Skew Polynomial Rings
Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...
متن کاملOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملCoding with skew polynomial rings
In analogy to cyclic codes, we study linear codes over finite fields obtained from left ideals in a quotient ring of a (non commutative) skew polynomial ring. The paper shows how existence and properties of such codes are linked to arithmetic properties of skew polynomials. This class of codes is a generalization of the θ-cyclic codes discussed in [1]. However θ-cyclic codes are performant repr...
متن کاملAssociated Prime Ideals of Skew Polynomial Rings
In this paper, it has been proved that for a Noetherian ring R and an automorphism σ of R, an associated prime ideal of R[x, σ] or R[x, x−1, σ] is the extension of its contraction to R and this contraction is the intersection of the orbit under σ of some associated prime ideal of R. The same statement is true for minimal prime ideals also. It has also been proved that for a Noetherian Q-algebra...
متن کاملPrime Radicals of Skew Laurent Polynomial Rings
Let R be a ring with an automorphism σ. An ideal I of R is σ-ideal of R if σ(I) = I. A proper ideal P of R is σ-prime ideal of R if P is a σ-ideal of R and for σ-ideals I and J of R, IJ ⊆ P implies that I ⊆ P or J ⊆ P . A proper ideal Q of R is σ-semiprime ideal of Q if Q is a σ-ideal and for a σ-ideal I of R, I2 ⊆ Q implies that I ⊆ Q. The σ-prime radical is defined by the intersection of all ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 41 شماره 2
صفحات 453- 462
تاریخ انتشار 2015-04-29
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023